Обрыв нуля или отгорание нуля в трехфазной сети, к чему это приводит


Перекос фаз: определение, причины его возникновения и способы защиты

В однофазном режиме значение напряжения должно составлять 220 вольт, а при трёхфазном — 380 вольт. Но в реальности эти числа практически не встречаются.

Поэтому проверив значение напряжения в розетке, можно наглядно убедиться в существовании перекоса фаз.

Чтобы приблизить значение напряжения к стандартным значениям, необходимо понимать, что подразумевается под словосочетанием «перекос фаз», его причинами и возможными способами устранения.

  • Суть понятия
  • Причины возникновения
  • Способы защиты
  • Последствия перекоса

Фаза — это электрическая цепь с некоторым значением синусоидальной электродвижущей силы.

Трёхфазная цепь, в свою очередь, состоит из трёх электрических цепей, которые владеют синусоидальной электродвижущей силой с одинаковой амплитудой и частотой тока.

Трёхфазная сеть состоит из трёх синусоидальных токов или напряжений, которые имеют одну частоту и сдвинуты по фазе на угол, равный 120 градусам.

Если потребителей электрической энергии подключить к фазам сети неравномерно — например, большинство сосредоточить в одной, а в двух других их будет гораздо меньше — это приведёт к асимметрии напряжения. При этом в трёхфазных четырёхпроводных сетях несимметричность параметров будет менее заметна, так как нулевой провод выравнивает неравномерность напряжения по фазам.

Причины возникновения

Нарушение симметричности напряжений в трёхфазной цепи — нежелательная ситуация. Поэтому для того чтобы её устранить, необходимо понять, почему она может возникнуть. Причины перекоса фаз в трёхфазной сети сводятся к основным трём обстоятельствам:

  • неравномерное группирование потребителей;
  • отсоединение нулевого провода;
  • замыкание фазного провода на землю.

При неправильном распределении потребителей в трёхфазной трёхпроводной цепи, напряжение на них будет существенно отличаться. Потребители, обладающие наименьшим сопротивлением, окажутся под повышенным напряжением. Токоприёмники с большим значением сопротивления будут иметь напряжение, не достигающее оптимального значения.

На источниках электроэнергии неравномерное распределение напряжения по фазам скажется в виде увеличенного потребления энергии, повреждений изоляции, износа, сокращение срока службы. При использовании автономного дизельного генератора увеличится расход топлива и охлаждающего вещества.

Снижение качества электрической изоляции для потребителей чревато такими последствиями:

  • повреждение, поломка бытовых приборов или электрической проводки;
  • возникновение пожара;
  • получение травм;
  • выход из строя электроприборов.

Способы защиты

Устранить нежелательное явление перекоса можно с помощью организационных мероприятий и установкой защитной аппаратуры.

К организационным мероприятиям относится правильное распределение нагрузки по всем фазам с учётом мощности. Недостатком является тот факт, что при всём желании проектировщика произвести очень точное размещение, особенно при подключении квартир, домов, невозможно.

Защитная аппаратура, которую можно установить:

  • Трёхфазный автоматический выключатель.
  • Трёхфазный стабилизатор напряжения.
  • Реле контроля фаз. Особенно целесообразно использовать реле совместно со стабилизаторами напряжения.
  • Симметрирующие трансформаторы. По строению они отличаются от силовых тем, что имеют дополнительную обмотку, которая включается между заземлением средней точки и нулём.

Недостатки трёхфазных стабилизаторов:

  • излишний расход электроэнергии;
  • низкая надёжность работы из-за частой смены деталей;
  • принцип работы, способствующий появлению перекоса фаз.

Последствия перекоса

Наиболее просто обнаружить неравномерность напряжения даже без вольтметра в быту. При его пониженном значении бытовые приборы могут не включаться, осветительные приборы будут гореть очень тускло.

Последствия неравномерного распределения нагрузки:

  • ухудшение качества электроэнергии;
  • появление уравнительных токов, из-за которых потери электроэнергии увеличиваются;
  • неэффективная работа электрооборудования, снижение качества электрической изоляции и, как следствие, уменьшение срока службы аппаратуры.

Перекос фаз — явление крайне нежелательное, но, к сожалению, довольно распространённое при работе электрооборудования. Полностью искоренить его почти невозможно. Поэтому необходимо следить, чтобы отклонения значения напряжений всегда находились в допустимых пределах. Это обеспечит длительный срок службы электроприборов и сохранит здоровье и жизнь обслуживающему персоналу.

Если кабель слишком длинный

Наиболее распространенная ситуация когда концы кабеля расположены в двух удаленных местах. Что делать?

С одной стороны соединяем два провода одного жгута, например используя электрический монтажный блок, или просто скручиваем их вместе.

После этой операции с другой стороны, если провод не обрывается в какой-либо точке, сопротивление между проводами должно быть незначительным из-за прямого подключения этих жил.

УЗО или ДИФФ с защитой от обрыва нуля

Уважаемые форумчани подскажите Пожалуста. Меняю проводку в своей квартире. Возник вопрос как защитить себя от обрыва нулевого проводника? Говорят что есть такие УЗО или дифференциальные автоматы которые имеют защиту от обрыва нуля. Если есть такие то подскажите какой фирмы лучше установить и какая точная у них маркировка. Или может быть есть какой либо другой способ защиты?

Я брал себе в 2 квартиры вот это, только модель постарше: ” > . Работает весьма неплохо, порог кажется 185-255 В, время задержки 3 мин. Одну квартиру мне спасло, в районе много апаратуры погорело, а у нас – ниче, тьфу 3 раза.

Комбинированная схема с электронным модулем дифференциальной защиты, варистором класса D и встроенным выключателем серии ВА47-29 обеспечивает 5 видов защиты oт:

дифференциального тока (тока утечки); короткого замыкания; перегрузки; импульсных; повышенного напряжения (265±5 В).

Время срабатывания великовато – 0.5 сек, а в реале – кто знает.

имейте ввиду, что любые УЗО-диффы со встроенной защитой от перенапряжения не включаются автоматически, в отличие от реле. В вашем холодильнике продукты имеют шансы протухнуть в ваше отсутствие, а рыбки в аквариуме починут смертью храбрых.

Комбинированная схема с электронным модулем дифференциальной защиты, варистором класса D и встроенным выключателем серии ВА47-29 обеспечивает 5 видов защиты oт: дифференциального тока (тока утечки); короткого замыкания; перегрузки; импульсных; повышенного напряжения (265±5 В).

Скажите а есть ли что то подобное у других фирм производителей таких как АВВ, Legrand, Schneider Electric и тгд.

не думаю что эти фирмы опустятся до такого уровня.

Я имею введу что существует ли у других фирм производителей УЗО или дифференциальный автомат именно С ЗАЩИТОЙ ОТ ОБРЫВА НУЛЯ. Или эту проблему они решают с помощью других каких либо устройств, если да то каких именно ?

Просто нормально обслуживают сеть.

Скорее, у них рынка просто нет на такие устройства

У большинства фирм есть реле контроля напряжения, асимметрии фаз.

Во-первых, не от 5, а от 3х. 2 последних – вычеркиваем. Во-вторых, при обрыве нуля АД не спасает и от первых 3х, поскольку его электроника перестает работать. В данном случае, как мне видится, нужно реле напряжения+ ДИФ. Не электронный.

Извиняюсь, неправильно сформулировал. Первые 2 защиты будут работать, поскольку они зависят от ВА-47, который полностью механический, 3-я нет, поскольку эта защита возложена на электронный блок.

Извиняюсь, неправильно сформулировал. Первые 2 защиты будут работать, поскольку они зависят от ВА-47, который полностью механический, 3-я нет, поскольку эта защита возложена на электронный блок.

Не совсем уверен в праильности сказанного: При обрвые нуля перестанет работать УЗО – это факт. Но. Варистор работать не перестанет. Более того – он то как раз и сработает (при превышении 265В), сбросив свое сопротивление к нулю (его Uc=265В). Через него – ток КЗ и. электромеханика автомата. Все работает

конечно не перестает. Его там просто нет. Не увидел его в описании. Тем более, никто, даже шизанутый ИЭК, не будет ставить одноразовую защиту в свои устройства. Еще одним косвенным признаком этого служит отсутствие графиков, иллюстрирующих скорость срабатывания ДИФа при превышении пороговых напряжений. Лежит у меня один 12, разбирать не хочу. Да мне и не нужно, поскольку в инструкции, приложенной к нему, этот вид защиты (защита о перенапряжения) не упомянут.

Шо за квиточек, Вам додалы? Она (защита) там- есть! Подайте на него напряжение и увидите. Но, этот параметр – не сертифицирован. И напряжения отключения плавает прилично. Т.е., де факто- есть, де юре – нет! Смысл – зачем платить больше? 2ТС не подходит ИЭК (по религиозным соображениям?) , ставьте -реле напряжения + контактор. Ссылка- во втором посту темы.

Есть такое устройство, вот: ” >

Вы не думайте, в своем посте:

я не собственные соображения наприсал, а скопировал с сайта ИЭК . И защита эта – не одноразовая, посокольку варистор класса D замечательно себя чувствует под током 5 кА в течение, как минимум, 28 мкс, после чего эм расцепитель АВ должен его освободить от этой посильной ноши.

И почему ИЭК “шизанутый” (сумашедший, как я понимаю ) – что ОНИ Вам плохого сделали? Обидели чем-то?

{SOURCE}

Где купить устройства защиты

Максимально быстро закрыть вопрос можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Реле максимального и минимального напряжения, 230В, 40А, 63АУниверсальное защитное устройствоУЗО от 16 до 63 А, 10мА-300мА
Диф. автомат TOB3L-32F 20ААвтоматический выключатель остаточного тока типа BРеле защиты от перенапряжения, 40-60А, 230В

Откуда в розетке 380в при обрыве нуля — наглядно, доступно, без формул.


Наверняка у каждого из вас, хотя бы раз в жизни сгорали бытовые приборы от перенапряжения. При этом многие слышали, что подобное не редко случается из-за обрыва ноля.
Давайте наглядно без формул, векторных диаграмм, смещений нулевых точек и т.п., с точки зрения обывателя попытаемся разобраться, каким же образом напряжение 380в, вместо привычных 220в, может оказаться в ваших розетках.

Ведь действительно возникает логичный вопрос, как это так, оборвался или отгорел один из проводов, а напряжение ни то что не пропадает, а становится даже больше.

Понимание этого процесса будет полезно каждому потребителю, дабы потом не возникало вопросов, зачем электрики пытаются «всунуть» в электрощиток, непонятные реле, стоимостью несколько тысяч рублей.

Чтобы доступно разобраться в сути этого явления, давайте вспомним разницу между последовательной и параллельной схемой подключения электроприемников.

При параллельном подключении, фазный и нулевой проводники одновременно приходят ко всем потребителям в цепи. Нарисуем такую схемку, где этими потребителями будут обыкновенные лампочки накаливания.

На входе напряжение составляет 220в. При таком подключении, на каждой лампочке напряжение будет одинаковым, и при достаточном сечении проводников и малой нагрузке, не будет сильно отличаться от вводного.

При этом отключение или включение каждой лампочки по очередности, не сильно скажется на его значениях. Именно по такой схеме и подключены все розетки в ваших квартирах.

Однако если напряжение будет одинаковым, ток в цепи будет разным. Общее его значение складывается из суммы токов проходящих через лампочку №1 и №2.

Вы можете включать и более мощные приборы (лампы 200Вт, чайник), и все будет прекрасно работать.

Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.

Только после этого он возвращается на вводной автомат или в общую сеть.

Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого

Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.

При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.

Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2

Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.

На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.

Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.

Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:

{SOURCE}

Допустимые параметры электроэнергии

Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда. Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В. Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры.

Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов).

Защита от обрыва нуля в трехфазной сети

Обрыв нулевого провода в системе заземления TN-C-S имеет свои особенности. Эта система электроснабжения наиболее распространена.

Система заземления TN-C-S

От трансформатора подстанции к потребителю электроэнергии подходят четыре проводника. Это три фазных провода L1, L2, L3 и проводник PEN, который совмещает функции рабочего нуля N, и защитного провода PE. У трансформатора подстанции проводник PEN заземлен. На входе в здание на ВРУ (вводное распределительное устройство) или в силовом щите проводник PEN разделяют на рабочий ноль N и защитный PE.

На лестничную площадку каждого этажа подводят 3 фазы, рабочий ноль и защитный провод. Далее 3 фазы стараются равномерно распределить по квартирам. Нагрузки в квартирах далеко не одинаковые, но напряжения по фазам примерно одинаковые. Это вызвано тем, что сдвиг фазы трехфазного тока составляет 120 градусов и при одинаковых нагрузках на 3 фазах ток нейтрали будет равен 0. При расхождении нагрузки на фазах, на нейтрали появится небольшой ток.

То есть, в этом случае нейтраль является компенсатором при расхождении нагрузок по фазам. Если произошел обрыв проводника PEN распределительного устройства в системе электроснабжения TN-C-S, то напряжение по фазам в квартирах может очень сильно отличаться. Напряжение в квартирах, где включена большая нагрузка (духовка, печь) может быть небольшим, а в квартирах, где нагрузка небольшая, напряжение может вырасти до максимума 380 В. Повышенное напряжение, появляется на нейтральном проводнике через нагрузку соседней квартиры, с другой фазой.

Подключение РН-113 в электрощитке

Высокое напряжение выведет из строя все включенные электроприборы и освещение. Так как в системе TN-C-S проводники N и PE соединены вместе, то при появлении напряжения на проводнике N вызовет напряжение на защитном проводнике PE, который соединен с корпусами электроприборов. При прикосновении человека к корпусу электроприбора и одновременном касании открытых частей металлических конструкций (металлические трубы, раковины, ванны) имеющих другой потенциал, получит удар током.

В некоторых домах возможно повторное заземление ВРУ или домовых электрощитов. В этом случае на корпусах электроприборов будет находиться уравнивающий потенциал, что значительно снизит вероятность поражения человека током. Для защиты от обрыва нуля в квартирах нижних этажей можно устанавливать заземляющий контур.

Однако индивидуальные контура заземления не способны в полной мере защитить человека от поражения электрическим током в виду недостаточной влажности и состава почвы, сопротивления заземления, не соблюдения правил монтажа контура и его обслуживания

Поэтому важно устанавливать в квартирных щитках реле напряжения, которое защитит электроприборы и человека от поражения током. Для полноты защиты наряду с реле напряжения устанавливают УЗО (устройство защитного отключения)

Пример квартирного щитка с УЗО и реле напряжения

Если произойдет обрыв нуля в квартирном щитке или в электропроводке квартиры, то есть обрыв нуля в однофазной сети 220 вольт, то такая неисправность не страшна для электроприборов, так как электрическая цепь не замкнута, в результате чего прибор работать не будет. Для человека обрыв нуля в однофазной сети 220В может нести опасность, если:

– нулевой провод используется как защитное заземление и присоединен к корпусу электроприборов (что запрещено):

– оголенный нулевой провод касается корпуса электроприбора.

Для защиты также рекомендуется устанавливать УЗО и реле напряжения в квартирный щиток.

Область применения защитного зануления

Защитное заземление используется в электрических установках напряжением до 1 кВ:

  1. — в сетях постоянного электрического тока с заземленной средней точкой источника;
  2. — в однофазных электросетях переменного тока с заземленным выводом;
  3. — в трехфазных электросетях переменного тока с заземленным нулем (система TN – S; как правило, это сети 660/380, 380/220, 220/127 В);
Предназначено защитное зануление для защиты от возможного поражения электрическим током. Например возникла ситуация когда внутри электроустановки произошло повреждение изоляции и корпус установки (например стиральной машины или холодильника) оказался под напряжением. В этом случае возникает ток короткого замыкания на который реагирует защита (автомат или пробки) и мгновенно отключает электроустановку от сети.

Образование цепи тока однофазного короткого замыкания (т.е. замыкания между нулевым и фазным защитными проводниками) происходит в случае замыкания фазного провода на зануленный корпус электропотребителя. Поврежденная электроустановка отключается от питающей сети вследствие срабатывания защиты, вызывающейся током однофазного короткого замыкания.

Для быстрого отключения находящейся электроустановки могут использоваться автоматические выключатели и плавкие предохранители, устанавливаемые для защиты от токов короткого замыкания. Также для этой цели применяются магнитные пускатели с тепловой защитой встроенного типа, контакторы с тепловыми реле, с помощью которых обеспечивается защита от перегрузки и др.

Принцип включения и виды повреждений нуля

Многоквартирные дома и частный сектор в совокупной привязке подсоединены к трехфазной сети от подстанции. Все фазы питания от 380V источника, при распределении подсоединяют по схеме «звезда» — на выходе 3 однофазные линии с напряжением 220V. Итоговый провод в жилых помещениях представлен 2 контактами – фазой и нулем.

В зависимости от места обрыва можно выделить такие виды нарушений электросети:

  1. Обрыв провода на источнике питания 380В – приводит к отключению электричества по всем линиям.
  2. Повреждение контакта перед распределением по «звезде» или на ней – смещение напряжения в линиях (пример – 154/285/224).
  3. Отсутствие нулевого контакта после распределения системы по принципу «звезда» – отключение всех источников в помещении или отдельной части системы.

Внимание!

Перекос напряжения на потребителях, выделенных по принципу «звезда», может происходить также при коротком замыкании одного из контактов или перенапряжении отдельной линии.

Возможные последствия отключения массы

При отключении нулевой линии у потребителя могут просто не работать электрические приборы – нет контакта, нет тока. При перекосе напряжения в идеальной сети, без использования защитного оборудования или его несрабатывания, возможно повреждение устройств, включенных в сеть, или их нестабильная работа. В зависимости от изменения параметров напряжения и тока в розетке приборы бытового применения могут реагировать по-разному.

Распространенные причины обрывов:

  1. Отгорание нулевого контакта при внезапном скачке нагрузки в электросети или коротком замыкании (козе).
  2. Ослабление контакта в месте соединения проводов – скрутки, клеммы, розетки, другое.
  3. Окислы в месте соединения проводников из разного материала в старой электропроводке.
  4. Механические повреждения – хищение кабеля, обрыв при ремонте или ветре.

Самые распространенные и дорогие потребители электротока оборудованы встроенной защитой (предохранителем). Такие части принципиального устройства прибора способны отсоединить от электропитания при слабости нагрузки или пресечь прохождение тока большой мощности. Если такого дополнения нет, то есть риск полного «сгорания» приборов. Но, при подключении, перед счетчиком устанавливают автоматические защитные реле или предохранители.

Когда обрыв контактного проводника массы происходит в однофазной сети – в пределах квартиры, то электрический ток не может нанести серьезного вреда. При перегорании нуля происходит простое отключение подсоединенного прибора – лампочки, компьютера или холодильника. Для возобновления работоспособности бытовой техники и других электроприборов требуется восстановить поврежденный контакт или переподсоединить к рабочему источнику с нулем.

Внимание!

При выполнении ремонтных работ в электрической сети обязательно отключать источник, в другом случае есть риски пострадать от электричества. В квартире или доме это автоматы на счетчике.

Опасность для человека и признаки повреждения

Если в сети происходит смещение напряжения, а в приборах, подключенных к сети, нет заземления – существует опасность поражения электротоком от корпуса. Но, определить риски можно только по косвенным признакам обрыва контактной линии массы. Самые явные можно заметить на глаз – мерцание освещения в доме или искрение розеток при включении штепселей.

Также на аварийные изменения напряжения могут указывать:

  • шум от счетчика;
  • беспричинное срабатывание реле;
  • автоматическое отключение приборов с защитой;
  • нагрев выключателей и розеток.

Если обрыв произошел внутри помещения или на входе автоматов электрического счетчика, обнаружить повреждение возможно, используя электромагнитный тестер или визуально. При повреждении контактов вне помещения – подъезд или ранее по линии, надо обязательно обращаться в службу ЖКХ или в РЭС. Электрики, которые будут направлены по вызову, сами определят место повреждения и восстановят контакт.

Старинные дедовские способы поиска проводов в стене

В поиске места прохождения кабеля так же могут помочь дедовские методы. Раньше для обнаружения проводки в стене обходились без приборов, при этом безопасно находили всю линию электросети под обоями, плиткой и штукатуркой. Как это делали наши деды и прадеды?

Предоставляем к Вашему вниманию три наиболее простых варианта, который позволят самому найти проводку:

1. Если намечается капитальный ремонт. Срываете обои и осматриваете стену в хрущевке (либо в доме). Обычно штробы для скрытой электропроводки немного выделяются цветом от остальных участков поверхности, да и на ощупь шпаклевка будет более шершавой.

Визуальное выделение штроб на фоне стен

2. Берете обыкновенный радиоприемник, настраиваете на 100 — 150 кГц и, подводя к стене, слушать характер шума. Появление посторонних звуков, шипения, потрескивания свидетельствует о наличии в данном месте провода. Рекомендуется включить в розетку, которая питается от искомой линии проводки, мощный электроприбор, чтобы по кабелю протекал ток нагрузки.

Радиоприемник

3. Альтернативный вариант по отношению к радиоприемнику, это использование микрофона и магнитофона. Подключаем микрофон и аккуратно ведем его вдоль поверхности. Появился шум либо треск – Вам удалось найти приблизительное место нахождения трассы.

Обычный микрофон

Обращаем Ваше внимание на то, что методы, где используются микрофон и приемник имеют довольно высокую погрешность в 15 см. Именно поэтому, опираясь на сигналы данных устройств лучше подстраховаться и еще немного отступить, чтобы не получить поражение током!. Можно также попробовать поискать местонахождение кабеля при помощи обычной индикаторной отверткой

Некоторые типы отверток реагируют на проложенный в стене кабель

Можно также попробовать поискать местонахождение кабеля при помощи обычной индикаторной отверткой. Некоторые типы отверток реагируют на проложенный в стене кабель.

В случае необходимости поиска скрытой электропроводки можно обратиться за помощью к специалистам, которые предоставляют подобную услугу. Преимуществом этого варианта является точность в определении мест расположения кабеля.

Если вы приобретаете первый раз прибор и еще не знаете, работает он или нет, то у опытного электрика наверняка уже есть проверенный временем прибор, который позволит с точностью определить не только местонахождение проводки в стене, но и точное место ее повреждения, в случае возникновения такой необходимости. Поэтому прежде чем идти в магазин за прибором следует подумать о целесообразности такой покупки.

Подключение реле напряжения

Реле напряжения подключается по схеме, приведенной ниже:

Рис.6 Схема подключения реле напряжения

Это — стандартная схема. Линиями с стрелками показаны силовые цепи.

Если перестраховаться, то лучше в схеме подключения применить автомат-байпас, как это делается в стабилизаторах напряжения. Это делается для того, чтобы потребитель мог худо-бедно работать в случае выхода напряжения за пределы. Если это так необходимо. Подключается Байпас-автомат параллельно контактам внутреннего реле нашего реле напряжения, в данном случае на контакты «2» и «3»

Байпас также может быть полезен при выходе из строя самого реле напряжения.

Необходимость проверки

Диэлектрические изделия проверяются на наличие проколов перед применением. Проверку перед каждым использованием следует осуществлять очень тщательно, так как даже едва заметный глазу дефект приводит диэлектрические перчатки в негодность, а человек, работающий в них, подвергает свою жизнь серьезному риску поражения электротоком. На отсутствие проколов изделие из латекса или резины осматривают перед работой визуально, а также надувая его воздухом путем закручивания. Но такой проверки явно недостаточно.

Перед работой требуется сделать осмотр перчаток на наличие на них внутренней и наружной поверхностях грязи или влаги – грязные или влажные средства защиты утрачивают свои диэлектрические свойства и не могут защитить человека от поражения электрическим разрядом тока.

После обработки перчатки-диэлектрики нужно очень хорошо просушить.

В некоторых случаях для дополнительной защиты латекса или резины на диэлектрические перчатки надевают сверху еще и кожаные краги либо защитные брезентовые рукавицы. В случае когда выполнять электромонтажные работы приходится в условиях минусовой температуры воздуха, внутрь под диэлектрическую защиту надевают трикотажные перчатки, которые помогут предотвратить переохлаждение и обморожение пальцев рук или ладони.

Сущность явления

Перекос фаз проявляется в трехфазных четырех- (пяти-) проводных сетях с глухозаземленной нейтралью напряжением до 1000 В.

Как правило, низковольтная трехфазная электрическая сеть напряжением 400 В (0,4 кВ) содержит источники электроэнергии, обмотки которых соединены в «звезду» с выведенным нулем.

Если трехфазная сеть четырехпроводная, то нулевой проводник выполняет две функции. Первая функция: нулевой рабочий проводник служит для подключения однофазных электроприемников. Вторая функция: нулевой рабочий проводник служит для работы защиты. В пятипроводной сети, каждой из двух перечисленных функций соответствует свой провод.В низковольтных сетях различают первичные и вторичные источники электроэнергии (источники питания) независимо от способа получения электрической энергии. К первичным источникам относятся те, которые непосредственно вырабатывают электроэнергию, например электрические генераторы (в качестве привода в них могут быть использованы гидроагрегаты, паровые турбины, дизели, газовые двигатели). К вторичным источникам относятся те, которые преобразуют электрическую энергию первичных источников, как правило, это трансформаторы, установленные в трансформаторных подстанциях (ТП).

Идеальную модель, отображающую взаимосвязь и взаиморасположение фазных и линейных напряжений можно изобразить в виде равностороннего треугольника с вершинами «А», «B», «С» и .Векторы АВ, ВС и CA (лежащие на сторонах треугольника) — это линейные напряжения (380В).Векторы, проведенные из центра треугольника к его вершинам — 0A, 0B и 0С — это фазные напряжения.В идеале они равны между собой 0A=0B=0С и сдвинуты друг относительно друга на угол 120°, то есть└A0B=└B0C=└C0A=120°. Данная модель является идеальной и перекос фазных напряжений в ней отсутствует.

Так как к трансформаторам ТП подключают множество потребителей, в том числе однофазных, то в каждый случайный момент времени можно ожидать, что нагрузки в различных фазах будут различны. Причем если даже однофазные нагрузки по величине одинаковы, то их включение под нагрузку или отключение не может происходить синхронно. Возникает ситуация RA > RB > RC ≠ 0, где «R» – это сопротивление нагрузки, и, соответственно, «RA» — это спротивление нагрузки на фазе А, «RB» — это спротивление нагрузки на фазе B, «RC» — это спротивление нагрузки на фазе C.

Различие фазных нагрузок по величине и характеру создает условия для возниконовения перекоса фазных напряжений.

Если обратиться к описанному выше равностороннему треугольнику, то графически это будет выглядеть следущим образом: точка 0 в центре треугольника, из которой исходят векторы идеальных фазных напряжений величиной 220В 0A, 0B и 0С, — смещается относительно центра треугольника. Назовем ее 0′. Смещаются и сами векторы фазных напряжений на произвольный угол друг относительно друга. Смещенные векторы фазных напряжений 0’A, 0’B и 0’С не равны между собой, 0’A ≠ 0’B ≠ 0’С. Напряжение на каждой из фаз меняется с величины в 220 В например на 190В, 240В и 230В соответственно.

Такая ситуация называется перекосом фазных напряжений.

Если бы сопротивления нагрузки были равны, то токи, через них протекающие так же были равны между собой.Учитывая то, что угол сдвига между ними равен 120°, то их геометрическая сумма равнялась бы нулю.

Однако при их неравенстве в результате суммирования возникает ток I00′, который называется уравнительным. А, следовательно, напряжение U00′, которое называется напряжением смещения.

Перекос фаз (фазных напряжений), как правило, характеризуется неизменностью или одинаковостью линейных напряжений источника и значительным различием по величине фазных напряжений. То есть равносторонний треугольник, образуемый векторами линейных напряжений остается равносторонним треугольником, это означает, что значение трех линейных напряжений соответствует 380В, возможны незначительные отклонения значений, которые называются являются допустимыми.Значительно смещаются векторы фазных напряжений внутри треугольника, которые соединяют точку внутри треугольника с его вершинами, меняется величина фазных напряжений и угол сдвига между ними.

Важные рекомендации

Располагая в комнате мебель, нужно учитывать расположение розеток и выключателей. Их не нужно загораживать, особенно удобные винтажные диммеры. В будущем при проблеме в загороженной розетке добавится изрядно лишней работы с передвиганием массивных шкафов и диванов. Если розетку не удается не заставить, то нужно предусмотреть доступ внутри шкафа: сделать проем в задней стенке. В таком случае можно будет без трудностей подтянуть лишь контакты, но делать основательный ремонт без перестановки мебели не удастся. Проблему с загороженной розеткой решает удлинитель-тройник.

Бывает, что решить проблему с розеткой возможно только способом переустановки рядом в другое место. Здесь понадобится дрель с буром-коронкой. Под бетон нужно покупать соответствующую. Делаем разметку. После просверливания оставшуюся часть выбиваем зубилом. К отверстию нужно проштробить канавку под провод от прежнего места. Провод удлиняем, скручиваем пропаиваем, изолируем. Вставляем в отверстие стакан розетки (подрозетник), протягиваем и выводим внутри концы проводов. Замешиваем алебастр, заполняем им щель между подрозетником и стеной, выравниваем заподлицо, даем время просохнуть. Закрепляем сердцевину розетки, подсоединяем провода и проверяем их мультиметром. Ставим накладку, прикручиваем крышку. Включаем электроприбор.

Последствия обрыва нуля в трехфазных и однофазных сетях

К домовому электрощиту многоквартирного дома подходит 3- х фазное напряжение 380 В. К подъездному щиту также подводится три фазы, для отдельной сети квартиры используется одна фаза и нейтраль. Такая система электропитания TN-C применялась для старых построек и существует до сих пор.

Двухпроводная сеть частного дома с защитным заземлением

В новых домах используется система питания TN-C-S с третьим, дополнительным защитным проводником. В многоквартирном доме все фазы распределены по квартирам равномерно таким образом, чтобы нагрузки на все три фазы были одинаковыми и перекос фаз был бы минимальным.

Однако при обрыве нулевого провода происходит перераспределение напряжения по фазам и возникает перекос фаз. В результате в одной квартире возможно напряжение поднимется до 380 В, а в другой будет занижена до 170 В. В обоих случаях бытовые электроприборы и техника выходят из строя.

Особенно чувствительны к таким перекосам фаз бытовые приборы, имеющие электродвигатели – это стиральные машины, холодильники, кондиционеры, вентиляторы, пылесосы и т. д. Величина напряжения при перекосе фаз зависит от числа подключенных потребителей электроэнергии на всех фазах и их мощности.

Что происходит при обрыве нуля? Напряжение с другой фазы, через подключенные приборы других квартир, поступает на общий нулевой провод и в квартирах в розетках появляется напряжение не 220 В (фаза – ноль, как должно быть), а напряжение 380 В (фаза – фаза).

В результате, подключенные бытовые приборы выходят из строя из-за перекоса напряжения сети. Хуже еще если в электропроводке старых построек с системой электропитания TN-C в качестве защитного проводника используется нулевой провод, который присоединяется к корпусу бытовых приборов.

Система энергоснабжения TN-C-S с дополнительным проводником заземления PE применяемая в новых постройках

Тогда при прикосновении к корпусу, человек получит опасный удар током. В новых домах система заземления TN-C-S с проводником защитного заземления, на корпусах бытовых приборов опасного напряжения не будет, опасности поражения током нет.

Если обрыв нуля в однофазной сети произошел у вас в квартире, то опасности для бытовых приборов не будет, а вот при касании корпуса прибора вас поразит током (старая электропроводка TN-C) если использовать рабочий ноль в качестве защитного заземления.

Если в дом подведена трехфазная сеть, то при обрыве нулевого провода в трехфазной сети возникнет опасность выхода из строя бытовых приборов, не зависимо где произошел обрыв в магистральной линии или у вас в доме.

Особенность нейтрали

Каждая обмотка трансформатора питающего потребителя в трёхфазной сети содержит два вывода, один из которых соединён с нейтралью. В месте соединения с нейтралью получается узел, в котором суммируются токи всех фаз. И они далее текут в «нулевом» проводе. По этой причине нейтраль является наиболее нагруженной в трёхфазной схеме «звезда с нулевым проводом». Чтобы уменьшить нагрузку на провод и связанные с этим нагрев и потери электроэнергии его заземляют.

Грунт получается аналогом проводника, который проложен параллельно нейтрали и берёт на себя часть её токовой нагрузки. Но такое облегчение возможно только между местами заземления. Поэтому в пределах тех или иных зданий, подключенных четырёхжильным кабелем или четырех — проводной линией электропередачи появляется перегруженный нулевой провод. И если происходит его обрыв по той или иной причине возникает обрыв нуля с возможными неприятностями.

Подведем итоги

Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, — принять необходимые меры для обеспечения защиты. Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети. Обнаружив первые признаки этого явления, следует отключить все электроприборы.

Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.

Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:

  • Мерцание ламп накаливания. Они наиболее чувствительны к перепаду уровня напряжения, возникающего при обрыве нуля. Энергосберегающие осветительные приборы и светодиодные лампы не настолько реагируют на изменения.
  • Электронные приборы, имеющие встроенную защиту, как правило, отключаются от сети питания. Или не запускаются. Такие действия предусмотрены реакцией защиты импульсных БП на броски напряжения. Характерно, что такая реакция может сработать раньше, чем реле напряжения. Но это, во многом зависит от производителя и схемы реализации защиты электросетей, а также надежности электрического соединения.
  • Еще один характерный признак – повышение температуры выключателя. Даже если Вы не обратили внимания на мерцание ламп, то данное проявление должно вызвать опасения.
  • Искрение, при попытке подключения электроприбора, может говорить об обрыве нуля на вводе однофазного потребителя. Даже, если оно вызвано другим фактором, а не обрывом нуля, это очень нехороший признак.
  • Самопроизвольные срабатывания вводных автоматов, также могут указывать на перенапряжение. Такая реакция на обрыв нуля характерна при включении электронагревательных приборов, например электропечи, бойлера, чайника и т.д.
  • Характерные звуки во вводном электрическом щите также могут указывать на перепады напряжения. В такой ситуации рекомендуется отключить ввод питания и дождаться приезда аварийной бригады. Велика вероятность, что авария обрыва нуля имела место в электросети поставщика.
  • Обязательно установите на вводе электрической сети реле напряжения. В идеале желательно продублировать данную систему стабилизатором напряжения для дома или квартиры. Такое устройство, работая в паре с реле, позволит поддерживать заданный уровень напряжения, не отключая питание.

Собственно, только многоуровневая защита может обеспечить максимальную безопасность.
No tags for this post.

Как защититься?

Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:

  • Начать необходимо с грамотного монтажа электропроводки. Если для питания объекта планируется задействовать трехфазную схему электроснабжения, то ее расчет должен быть произведен таким образом, чтобы минимизировать вероятность перекоса фаз. То есть, необходимо планомерно распределить нагрузку на каждую линию.
  • Следует задействовать в управлении сетью приборы, выравнивающие нагрузку на каждую из фаз. Причем, в идеале, эта работа должна осуществляться без привлечения операторов, то есть, выполняться автоматически при обрыве нуля.
  • Должна иметься возможность оперативного изменения схемы подключения потребителей. Это позволяет внести корректировки, если на этапе проектирования не была должным образом учтена нагрузка на каждый участок или увеличилась мощность потребления в связи с вводом новых объектов. То есть, при возникновении критической ситуации должна иметься возможность изменения мощности. В качестве примера можно привести вариант, когда многоквартирный дом переводится на линию с большей нагрузкой для «разбавления» перекоса фаз, возникающего при обрыве нуля.

В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]